Counting Points for Hyperelliptic Curves of Type y2= x5 + ax over Finite Prime Fields
نویسندگان
چکیده
Counting rational points on Jacobian varieties of hyperelliptic curves over finite fields is very important for constructing hyperelliptic curve cryptosystems (HCC), but known algorithms for general curves over given large prime fields need very long running times. In this article, we propose an extremely fast point counting algorithm for hyperelliptic curves of type y = x + ax over given large prime fields Fp, e.g. 80-bit fields. For these curves, we also determine the necessary condition to be suitable for HCC, that is, to satisfy that the order of the Jacobian group is of the form l · c where l is a prime number greater than about 2 and c is a very small integer. We show some examples of suitable curves for HCC obtained by using our algorithm. We also treat curves of type y = x + a where a is not square in Fp.
منابع مشابه
Suitable Curves for Genus-4 HCC over Prime Fields: Point Counting Formulae for Hyperelliptic Curves of Type y2=x2k+1+ax
Computing the order of the Jacobian group of a hyperelliptic curve over a finite field is very important to construct a hyperelliptic curve cryptosystem (HCC), because to construct secure HCC, we need Jacobian groups of order in the form l · c where l is a prime greater than about 2 and c is a very small integer. But even in the case of genus two, known algorithms to compute the order of a Jaco...
متن کاملTate pairing for y2=x5-αx in Characteristic Five
In this paper, for the genus-2 hyperelliptic curve y2 = x5 − αx (α = ±2) defined over finite fields of characteristic five, we construct a distortion map explicitly, and show the map indeed gives an input for which the value of the Tate pairing is not trivial. Next we describe a computation of the Tate pairing by using the proposed distortion map. Furthermore, we also see that this type of curv...
متن کاملPairing-Friendly Hyperelliptic Curves with Ordinary Jacobians of Type y2=x5ax
An explicit construction of pairing-friendly hyperelliptic curves with ordinary Jacobians was firstly given by D. Freeman. In this paper, we give other explicit constructions of pairing-friendly hyperelliptic curves with ordinary Jacobians based on the closed formulae for the order of the Jacobian of a hyperelliptic curve of type y = x + ax. We present two methods in this paper. One is an analo...
متن کاملFields of definition of torsion points on the Jacobians of genus 2 hyperelliptic curves over finite fields
This paper deals with fields of definition of the l-torsion points on the Jacobians of genus 2 hyperelliptic curves over finite fields in order to speed Gaudry and Schost’s point counting algorithm for genus 2 hyperelliptic curves up. A result in this paper shows that the extension degrees of the fields of difinition of the l-torsion points can be in O(l) instead of O(l). The effects of the res...
متن کاملPointless hyperelliptic curves
In this paper we consider the question of whether there exists a hyperelliptic curve of genus g which is defined over but has no rational points over for various pairs . As an example of such a result, we show that if p is a prime such that is also prime then there will be pointless hyperelliptic curves over of every genus.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2002 شماره
صفحات -
تاریخ انتشار 2002